i2cdriver

Feb 07, 2023






Contents:

1 System Requirements 3
1.1 Installation . . . . . . . . . e e e e e e e e e 3
1.2 Quickstart . . . . . . e e e e e e e e e 3
1.3 Module Contents . . . . . . . . . e e e e e e e e 4
Index 7







i2cdriver

-
)

(&)
v
q
L}
<
m
A

[ T .
LTI

I2CDriver is an easy-to-use, open source tool for controlling I2C devices over USB. It works with Windows, Mac, and
Linux, and has a built-in color screen that shows a live “dashboard” of all the I>C activity.

The I?CDriver User Guide has complete information on the hardware:

https://i2cdriver.com/i2cdriver.pdf

Contents: 1


https://i2cdriver.com
https://i2cdriver.com
https://i2cdriver.com/i2cdriver.pdf

i2cdriver

2 Contents:



CHAPTER 1

System Requirements

Because it is a pure Python module, i2cdriver can run on any system supported by pyserial. This includes:

* Windows 7 or 10
* Mac OS
* Linux, including all Ubuntu distributions

Both Python 2.7 and 3.x are supported.

1.1 Installation

The i2cdriver package can be installed from PyPI using pip:

’$ pip install i2cdriver

1.2 Quick start

To connect to the I2CDriver and scan the bus for connected devices:

>>> import i2cdriver
>>> i2c = i2cdriver.I2CDriver ("/dev/ttyUSBO")
>>> i12c.scan ()

(continues on next page)




i2cdriver

(continued from previous page)

[28, 72, 104]

To read the temperature in Celsius from a connected LM75 sensor:

>>> d=i2cdriver.EDS.Temp (i2c)
>>> d.read()

17.875

>>> d.read()

18.0

The User Guide at https://i2cdriver.com has more examples.

1.3 Module Contents

class i2cdriver.I2CDriver (port="/dev/ttyUSBO’, reset=True)
A connected 12CDriver.

Parameters
» port (str)—The USB port to connect to
e reset (bool)—Issue an I2C bus reset on connection

After connection, the following object variables reflect the current values of the [2CDriver. They are updated by
calling getstatus ().

Variables
* product — product code e.g. ‘i2cdriverl’ or ‘i2cdriverm’
* serial - serial string of I2CDriver
* uptime — time since I2CDriver boot, in seconds
* voltage — USB voltage, in V
* current — current used by attached device, in mA
* temp - temperature, in degrees C
* scl - state of SCL
* sda - state of SDA
* speed — current device speed in KHz (100 or 400)
* mode — IO mode (I2C or bitbang)
* pullups - programmable pullup enable pins
* ccitt_cre — CCITT-16 CRC of all transmitted and received bytes

setspeed (s)
Set the I2C bus speed.

Parameters s (int) - speed in KHz, either 100 or 400

4 Chapter 1. System Requirements



https://i2cdriver.com
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

i2cdriver

setpullups (s)
Set the I2CDriver pullup resistors

Parameters s — 6-bit pullup mask

scan (silent=Fualse)
Performs an I2C bus scan. If silent is False, prints a map of devices

. Returns a list of the device addresses.

>>> i2c.scan ()

(28, 72, 104]

reset ()
Send an I2C bus reset

start (dev, rw)
Start an I2C transaction

Parameters
¢ dev — 7-bit I2C device address
e rw—read (1) or write (0)

To write bytes [0x12, 0x34] to device 0x75:

>>> i2c.start (0x75, 0)
>>> i2c.write ([0x12,0347)
>>> i2c.stop ()

read (/)
Read I bytes from the 12C device, and NAK the last byte

write (bb)
Write bytes to the selected I12C device

Parameters bb — sequence to write

stop ()
stop the i2c transaction

regrd (dev, reg, fmt="B’)
Read a register from a device.

Parameters
¢ dev — 7-bit I2C device address

* reg - register address 0-255

1.3.

Module Contents




i2cdriver

e fmt — struct.unpack () format string for the register contents, or an integer byte
count

If device 0x75 has a 16-bit unsigned big-endian register 102, it can be read with:

>>> i2c.regrd(0x75, 102, ">H")
4999

regwr (dev, reg, vv)
Write a device’s register.

Parameters
* dev — 7-bit I12C device address
* reg - register address 0-255
* vv — value to write. Either a single byte, or a sequence

To set device 0x34 byte register 7 to OxAl:

’>>> i2c.regwr (0x34, 7, Oxal)

If device 0x75 has a big-endian 16-bit register 102 you can set it to 4999 with:

’>>> i2c.regwr (0x75, 102, struct.pack(">H", 4999))

monitor (s)
Enter or leave monitor mode

Parameters s — True to enter monitor mode, False to leave

getstatus ()
Update all status variables

class i2cdriver.START (addr, rw, ack)
class i2cdriver.STOP

class i2cdriver .BYTE (b, rw, ack)

6 Chapter 1. System Requirements


https://docs.python.org/3/library/struct.html#struct.unpack

Index

B

BYTE (class in i2cdriver), 6

G

getstatus () (i2cdriver.I2CDriver method), 6

I2CDriver (class in i2cdriver), 4

M

monitor () (i2cdriver.I2CDriver method), 6

R

read () (i2cdriver.I2CDriver method), 5

regrd () (i2cdriver.I2CDriver method), 5
regwr () (2cdriver.I2CDriver method), 6
reset () (i2cdriver.I2CDriver method), 5

S

scan () (i2cdriverI2CDriver method), 5
setpullups () (i2cdriver.I2CDriver method), 5
setspeed () (i2cdriverI2CDriver method), 4
START (class in i2cdriver), 6

start () (i2cdriver.I2CDriver method), 5

STOP (class in i2cdriver), 6

stop () (i2cdriver.I2CDriver method), 5

W

write () (i2cdriver.I2CDriver method), 5




	System Requirements
	Installation
	Quick start
	Module Contents

	Index

